\square

Log:
Course:

Declination at the $H O U R$ of meridian passage at ship's position will be:

Increment:
(+ sign when Declination is increasing)
$=$ Declination at the time of meridian passage at ship's DR

[^0][^1]
Sun Sight

DR Latitude:	DR Longitude:	
Chosen Latitude:	Log:	Course:

Chosen Longitude (-West +East)
$=$ Local Hour Angle (LHA)
00,0

*Additional corrections for non-standard conditions (temperature, pressure) could be applied on top.

Star Sight Plan by Pub. 249 Vol. 1 "Selected Stars"

DR Latitude:
DR Longitude: \qquad Morning / Evening : Twilight

Chosen Latitude:
Log:

At the HOUR of civil twilight: 'find GHA of Increment: MINS $=$	$+$
= GHA of Aries @ civil twilight	
Chosen Longitude (-West + East)	
$=$ Local Hour Angle (LHA)	00'0

Star Sight Plan by Pub. 249 Vol. 1 "Selected Stars"

Time on Greenwich Meridian @ ship's latitude:

DR Longitude:

Log:

Morning / Evening : Twilight

\square

Sunset/		Sunrise/ Nautical
Twilight	Civil	Nautical
Twilight	Twilight	

Period in minutes:
Halve period:
Available period:

Star Sight Reduction by Pub. 249 Vol. 1 "Selected Stars"

*Additional corrections for non-standard conditions (temperature, pressure) could be applied on top.
Using Pub. 249 Vol. 1 "Selected Stars" is easier and faster than SHA method. The disadvantage is that only 7 selected stars are given for each Latitude and LHA in the Vol. 1. All 57 navigational stars are available when using SHA method and could be useful if you cannot find the given "Selected Stars".

Star Sight Plan (SHA Method)

DR Latitude:	DR Longitude:	Star Name:	

Chosen Latitude:

> Enter sight reduction table with Chosen Latitude, Declination (rounded to the whole degrees) and Local Hour Angle (LHA). Use "SAME" tables if DR Latitude and Declination are on the same hemisphere, otherwise use "CONTRARY".

South Lat:
if $\mathbf{L H A}>180$ then $\mathbf{Z N}=180-\mathbf{Z}$,
if $\mathbf{L H A}<\mathbf{1 8 0}$ then $\mathbf{Z n}=\mathbf{1 8 0}+\mathbf{Z}$
*We are looking for stars which should be visible from the boat, i.e. over a meridian which is not too far away from the boat meridian (70° on either side, depending on the season, boat latitude, and the Declination of the star). This means the LHA has to be less than 70° and greater than 290°. Doing the exercise for every navigational star is time consuming. In practice, doing rough mental calculation to pre-select stars should be enough. A more straightforward option is to use a Starfinder which only requires calculation of LHA of Aries to get azimuth and bearing for all available stars all at once:

$$
\text { LHA of Aries = GHA Aries }- \text { Boat Longitude West (+ if Longitude is East) }
$$

Once the stars are pre-selected you can continue the calculation using Sight Reduction Tables.

Star Sight Reduction (SHA method)

= Local Hour Angle (LHA)
$00^{\prime} 0$

North Lat: if LHA > 180 then $\mathbf{Z n}=\mathbf{Z}$, if LHA <180 then $\mathbf{Z N}=\mathbf{3 6 0} \mathbf{- Z}$ South Lat: if LHA > $\mathbf{1 8 0}$ then $\mathbf{Z N}=\mathbf{1 8 0}-\mathrm{Z}$, if LHA $<\mathbf{1 8 0}$ then $\mathbf{Z n}=\mathbf{1 8 0}+\mathbf{Z}$

[^2]
Moon Sight

*Additional corrections for non-standard conditions (temperature, pressure) could be applied on top.

Planet Finder

DR Latitude:


```
DR Longitude:
```

Planet Name:

Chosen Latitude:

Enter sight reduction table with Chosen Latitude,Declination (rounded to the whole degrees) and Local Hour Angle (LHA). Use 'SAME" if DR Lat and Dec are on the same hemisphere, otherwise use "CONTRARY".

'Hc"	'Z'
North Lat:	
if LHA > 180 then $\mathrm{Zn}=\mathbf{Z}$, if $\mathbf{L H A}<180$ then $\mathrm{ZN}=\mathbf{3 6 0}-\mathrm{Z}$	'ZN"

```
South Lat:
    if LHA > 180 then ZN = 180-Z,
    if LHA < 180 then Zn=180+Z
```

The planets orbit the sun and when they are close to the sun when viewed from the earth, they are not available for Astro use. To pre-check their availability, refer to the planet diagram in astronomical phenomena or nautical almanac that shows Local Time of Meridian Passage of Planets for each day of the year. Beware of confusing planets that are close together - see the notes in the astronomical phenomena or the nautical almanac.
Use this form to find an approximate Azimuth (true bearing) and rough altitude for the planet that you want to observe. Do not worry about " v " or " d " corrections. Use only the whole degrees of declination rounded to the nearest degree. At the time of civil twilight sight along the bearing (convert it from true to compass) and the body that does not twinkle at the altitude shown is the planet that you are looking for.

Planet Sight

*Additional corrections for non-standard conditions (temperature, pressure) could be applied on top.

Polaris Sight

*Additional corrections for non-standard conditions (temperature, pressure) could be applied on top. © www.bluewatermiles.com

Compass Check on the Sun

DR Latitude:

DR Longitude: \square

Heading (C): \square

The derived deviation is only applicable to this vessel while on a specific heading.

[^0]: *Latitude greater than declination. Same hemisphere: Latitude $=$ Zenith distance + Declination

 Latitude less than declination. Same hemisphere:
 Latitude opposite hemisphere to declination:

 Latitude $=$ Declination - Zenith Distance
 Latitude $=$ Zenith distance $\boldsymbol{-}$ Declination

[^1]: **Additional corrections for non-standard conditions (temperature, pressure) could be applied on top.

[^2]: *Additional corrections for non-standard conditions (temperature, pressure) could be applied on top
 **Pub. No. 249 is limited to Dec. 0° to 29°. For Dec. $>29^{\circ}$ use Sight Reduction Tables Pub. No. 229 (covers Dec. 0° to 90°)

